
MATHEMATICS OF COMPUTATION
VOLUME 36, NUMBER 154
APRIL 1981

Type-Insensitive ODE Codes Based on
Implicit A-Stable Formulas

By L. F. Shampine

Abstract. A special concept of stiffness is appropriate for implicit A-stable formulas. It is
possible to recognize this kind of stiffness economically and reliably using information
readily available during the integration of an ODE. Using this development, a variety of
effective ODE solvers could be made insensitive to the type of problem, i.e. the code would
automatically recognize and alter automatically its algorithm at any step depending on
whether the problem is stiff there.

1. Introduction. Codes for the numerical solution of the initial value problem for
a system of ordinary differential equations (ODEs) are divided into two types. One
type is intended for the solution of stiff problems and the other type for nonstiff
problems. The first thing every user must do is to decide which type is appropriate
to his problem. The decision is important. If the problem is at all stiff, it is
prohibitively expensive to use a code intended for nonstiff problems. If the
problem is not stiff, it is feasible to use a code intended for stiff problems.
However, the cost is, relatively speaking, very high because such codes form
Jacobians, form and factor iteration matrices, and solve linear systems. These are
expensive operations not performed in codes for nonstiff problems. The storage
required is also very high because of the matrices used. In addition, formulas in
codes for stiff problems are often of comparatively low order, and the nonstiff
problems are the ones which might well be solved to high accuracy. Worst of all,
from the user's point of view, is that he has to get much more involved in the
solution because stiff problems are simply harder. The most distasteful matters are
the provision of a Jacobian and of structure information about the Jacobian.

Naturally, the first question a user asks is how to recognize stiffness. Numerical
analysts become evasive then because there is no simple answer. Stiffness depends
on the formula used in the code as well as on the user's problem. It depends on the
solution itself which is, of course, not available. Even a qualitative understanding
of the solution behavior is not enough because stiffness depends on the equation
too. It is typical that physical problems involve the solution of ODEs for a range of
parameter values. Small changes of a parameter may change the overall type; see
for example [1], [2]. Even if it were possible to provide the user with an answer
adequate for current codes, this would still be unsatisfactory for the code developer
because the type can, and ordinarily does, change in the course of the integration
of a "stiff" problem. Almost all problems described as "stiff" have regions of sharp

Received January 9, 1980; revised August 11, 1980.
1980 Mathematics Subject Classification. Primary 65L05.
Key words and phrases. ODE codes, stiffness, A-stable.

? 1981 American Mathematical Society
0025-5718/81/0000-0059/$04.00

499

500 L. F. SHAMPINE

change (boundary layers) in which the integration is relatively expensive but not
stiff. From this sketch of the situation, it is fair to say that the most serious defect
in current user interfaces to codes for the initial value problem for ODEs is this
type decision required of the user. There are several possible remedies; in this
paper we describe one way to provide type-insensitive codes.

As we see it, there are certain minimum requirements for a truly type-insensitive
code. If a problem is unequivocally nonstiff, we must avoid entirely the formation
of Jacobians and its associated storage and matrix computations. If the problem is
unequivocally stiff, we must use a method efficient for stiff problems. Of course, it
would be desirable to use a method efficient for nonstiff problems when the
problem is not stiff, but this is by no means essential. We are insisting that the
worst inefficiencies be avoided, so if the method used is at all reasonable, the cost
of solving these relatively cheap problems will be acceptable (or at least tolerable)
to a great many users. In this paper we show how to achieve this minimum level of
success and more. Most stiff problems will actually be solved more efficiently using
our ideas, because we take advantage of portions of the integration which are not
stiff. The solution of nonstiff problems will be reasonably efficient, although not in
general comparable to that of the best codes for this specific task. However, we will
describe how to solve the nonstiff portions about as well as possible, when we
restrict ourselves to formulas of order two. Though limited in scope, this result
could provide an extremely useful tool in contexts such as simulation languages
where low order may be acceptable and an efficient type-insensitive code of
obvious value.

The theoretical results are interesting quite aside from their practical implica-
tions. By restricting our attention to implicit A-stable (IA) formulas, we are able to
characterize stiffness in a practical way. It turns out that one can recognize this
kind of stiffness, which we term "IA-stiffness," economically and reliably using
information readily available during the integration. This tidy development pro-
vides the foundation for a subsequent paper reporting our investigation of formulas
which are not A -stable.

2. IA-Stiffness and its Recognition. The practical man frequently asks, "What is
stiffness?" There is no simple answer. A little reflection about the theory and
practice provides one reason-stiffness depends on the formula being considered as
well as the problem. Implicit A-stable (IA) formulas are the object of this study.
Although the word "implicit" may seem superfluous here, we insist on it, as well as
"A-stable," so as to draw attention to the two attributes which are the foundation
of our investigation. To remind the reader that we employ a special concept of
stiffness, we shall speak of "IA-stiffness."

It may be puzzling that one even mentions stiffness in connection with A-stable
formulas. Insofar as we have noticed, no one has asked straight out, what is
stiffness for an A-stable formula, but the question has been answered implicitly
many times. To see this we must review the situation. The review will also serve to
state a number of items we shall need later. First let us recall a few familiar
examples from the family of Adams-Moulton (AM) formulas and the family of
backward differentiation formulas (BDF). The formulas of order 1, AMI and
BDF1, are the same formula, usually called the backward Euler formula. When

TYPE-INSENSITIVE ODE CODES 501

solving a system of differential equations,

y =f(X,y),
it is

Yn+I =Yn + hf(Xn+ ,Yn+l).

Here yn approximates y(xn) and xn + = xn + h. The AM formula of order 2 is
better known as the trapezoidal rule,

Yn+lI = Yn +
h

fo(Xn + IIYn +) + f(Xn I YJ

The BDF of order 2 with constant step size h is

Yn+1 =
2

hf(Xn+ 1Yn+l) + 4Yn-I Yn- 1

The formulas cited are implicit, as are all the common formulas intended for the
solution of stiff problems. Suppressing the independent variable, we see that these
formulas have the generic form

(1) y = hyf(y) + 4, hy > O,
for the algebraic equations to be solved at each step for their solution y*. Here y
represents the new solution value, y comes from the formula, h is the step size, and
4i lumps together previously computed quantities. Easy extensions of the form
cover formulas with more complicated structure, such as implicit Runge-Kutta
formulas. The standard way [3] of solving (1) is to approximate the Jacobian matrix
at xn +II Yn +I by a matrix J and then to improve an approximate solution y m by
solving

(2a) y m+ I =t 7p + hyf(y m) + hyJ(y m+ y m),

or, equivalently,

(2b) (I - hyJ)(ym+l - yim) = ,i + hyf(ym) - y.

The choice J = 0 is called simple, or functional, iteration. If J is nontrivial, a lot
more work is involved. In the order of (typically) decreasing cost, an approximate
Jacobian J must be formed, an iteration matrix I - hyJ must be formed and
factored, and the systems of linear equations (2) must be solved. The iteration with
J -# 0 is called a simplified Newton or, sometimes, quasi-Newton iteration. Because
a change of step size alters the iteration matrix and so induces a relatively
expensive matrix decomposition, codes for stiff problems make such changes only
when they must and when a significant increase of step size is possible. Codes for
nonstiff problems take advantage of even modest alterations of step size.

The practical difficulty of stiffness is that a step size which would yield the
desired accuracy must be severely restricted for other reasons, and so one has to
work much harder than appears reasonable. With an implicit A -stable formula, the
usual restriction on the step size to maintain absolute stability is not present. The
only obvious restriction on the step size arises in the solution of the implicit
formula. Simple iteration may require the step size to be severely restricted in order
to get adequate convergence. In such a situation using a nontrivial approximation
to the Jacobian in (2) may greatly ease this restriction. The simplified Newton
iteration is much more expensive per step than simple iteration, but it can lead to

502 L. F. SHAMPINE

enormous increases in efficiency because the step size used can be so much larger.
It is worth comment that how rapidly the true Jacobian changes along the solution,
the accuracy of the approximation J, the way J is used, and the like may lead to
other restrictions on the step size in order to secure adequate convergence.

It is quite clear from previous use of the example formulas that people consider a
problem to be nonstiff for them if convergence of simple iteration does not restrict
unduly the step size, and stiff otherwise. The backward Euler formula is especially
illuminating. In its guise as AM1, it is evaluated by simple iteration and used for
nonstiff problems. In its guise as BDF1, it is evaluated by a simplified Newton
method and used for stiff problems. The famous DIFSUB code of Gear [4]
implements both the Adams-Moulton family and the BDF and makes precisely this
distinction for this formula.

For an implicit A-stable (IA) formula, we define the problem to be nonstiff at
Xn+ Yn + if simple iteration works "satisfactorily" and otherwise stiff. This is in
agreement with previous practice with such formulas. It is an unusually specific
and practical definition for what we call IA-stiffness.

With mild smoothness assumptions on f, the condition [5] for convergence of
simple iteration for all starting guesses y in a neighborhood of a solution y* of (2)
is that

h-yp af (y*))< 1,

where p(M) means the spectral radius of the matrix M. If this condition holds,
there is a norm in which the iteration is contracting. The criterion is not at all
realistic. Codes work with specific norms and must observe convergence which
must be rapid. It is of no interest that a process will eventually converge if the code
permits no more than three or four iterations, as is typical. The practical condition
is that

(3) hy af (Y*) < 1.
ay

The condition (3) must be modified to take into account certain other practical
issues. For one thing, simple iteration is so much cheaper than a simplified Newton
iteration and permits so much more rapid variation of step size that it is cost-effec-
tive to reduce the step size h substantially to some Sh if necessary to secure
adequate convergence. The condition (3) merely says that simple iteration will
contract in a sufficiently small ball abouty*. In practice we must have pretty rapid
convergence and so must require that it be at least as fast as a selected number r,
e.g., 0.25. Thus, we ask if

(4) max hy af < r <1
11Y-Y 11<P ay

for a ball of radius v containingy* andy?. We remark for later use that

(5) L= max af

is a Lipschitz constant for f on the ball. If (4) holds, we say the problem is locally
nonstiff for the IA formula and otherwise it is stiff.

TYPE-INSENSITIVE ODE CODES 503

3. Changing Type from Stiff to Nonstiff. It has occurred to many people to use
the norm of the Jacobian to decide if simple iteration is feasible. The trouble is that
being able to make this decision is all but useless if one cannot decide when to
switch back to a simplified Newton iteration. It is for this reason that the author
has devoted his earlier research to the harder task. A way to accomplish this task
for IA formulas is presented in the next section. Although deciding when to switch
to simple iteration is relatively easy, it is not entirely straightforward. We are not
aware of any previous discussion of the practical issues involved, so we take them
up in this section.

The first issue to be addressed is the matrix norm. To apply the condition (2.4), it
is necessary that we select a matrix norm compatible with the vector norm being
employed in the error control. It would be preferable to use the subordinate norm
so that the condition will be sharp. To be practical, the matrix norm must be a
cheap, simple computation. The only popular vector norms in current codes are
(weighted) maximum, Euclidean, and RMS norms. The last is a constant multiple
of the Euclidean norm, so there are really only two norms which concern us. The
matrix norm subordinate to the maximum norm is-computationally convenient, but
that for the Euclidean norm is impractical. The Frobenius matrix norm is a
practical alternative compatible with the Euclidean vector norm. It has enjoyed
some popularity in numerical linear algebra, but the fact that it can differ
substantially from the desired subordinate norm is a serious disadvantage in this
context. There are various arguments in favor of one vector norm or another, but
none is convincing. Our preference is to work with the maximum norm and its
subordinate matrix norm because of the advantages enjoyed by the matrix norm in
this context.

The condition (2.4) refers to the maximum value of the Jacobian on a ball
containing the predicted solution at x, + 1. Our intention is to estimate this quantity
by means of the approximation J, formed in the code for the iteration (2.2). At best
one has a matrix obtained by evaluation of analytical expressions for the partial
derivatives at a predicted solution Y2+i. Most current codes retain an iteration
matrix as long as convergence is at a satisfactory rate. Only when a substantial
increase of step size is possible do they form a new J and iteration matrix. A few
codes may not form a new J even then, using instead the old J in the new iteration
matrix. (We advocate this in [3].) The point here is that the argument for the partial
derivatives may be a solution obtained at some time in the past. In addition many,
if not most, problems are solved by numerical approximation of the partial
derivatives. Thus, it may well be that we do not have a particularly good
approximation to the desired Jacobian. A related difficulty is that the norm may
vary from step to step. For example, if a pure relative error control is prescribed,
the weights are the reciprocals of the solution components. Although these observa-
tions should instill a sense of caution, the situation is not at all worrisome. An old J
is used only when it is believed that the Jacobian is roughly constant along and
near the solution. If evidence to the contrary, such as unsatisfactory convergence, is
observed, a new J is formed. Thus, we expect that II J II be a reasonable approxima-
tion to the size of the Jacobian on a ball about the predicted solution. It would be
possible to recompute IIJII at each step should the norm change, but it hardly
seems worth the effort, and we do not suggest it.

504 L. F. SHAMPINE

Computation of J is quite cheap for the maximum norm and advantage can
be taken of a known sparsity of J. The cost is comparable to solving a linear
system with a matrix already factored. As we suggest it, the norm is calculated
every time a new J is formed and not at the formation of a new iteration matrix (a
rather more frequent event if one saves J, as we advocate). One factorization of an
iteration matrix costs as much as many norm computations. There is almost always
an initial transient present for problems showing some stiffness and, anyway, one
should start the integration with a step size small enough so that simple iteration
works, so as to get on scale. The type of code we propose will take, then, at least
one step with simple iteration which the usual code aimed at stiff problems will
handle with a simplified Newton iteration. Avoiding the formation of the Jacobian,
the factorization of the corresponding iteration matrix, and the solution of several
linear systems will compensate for the extra overhead during the remainder of the
integration of the test we propose.

We want to make it easy to switch to simple iteration. Simple iteration is much
cheaper and it is practical to adapt the step size to the solution much more
precisely than when using a simplified Newton iteration. The scheme described in
the next section for recognizing stiffness is cheap. There is an important reason for
making it a lot easier to switch in one direction than the other. One would not
expect the character of the problem to change frequently, but if one uses a simple
threshold, one might possibly encounter a special correlation of problem and
threshold which causes frequent switches. An asymmetry in switching controls the
difficulty. We do not suggest forming a new approximate Jacobian J for a sharper
test if, when using an old IIJ II, we should find that a switch is possible with the
current step size. For the reasons outlined, a borderline case like this would be
handled most efficiently by going to simple iteration.

If one forms a new J and finds that simple iteration is possible, one switches and
makes no use of this approximate Jacobian. Ideally, we would like to make the
decision before forming the Jacobian; we do not see how to do this. We do
advocate saving this J. Should it appear desirable to go back to a simplified
Newton iteration, one must decide whether to form a new Jacobian or to use a
stored J. If we retain the arguments Yk and xk at which the stored J was evaluated,
or at least Ilykll and Xk, we can compare them to the current arguments. If the
arguments have not changed much, it would appear reasonable to try using the
stored J and otherwise to form a new J. This simple test will be especially valuable
in avoiding troubles due to potentially frequent switches resulting from the use of
the less than ideal formulas we take up in another paper.

A final point is that the test proposed is rather sharp if the approximation to the
Jacobian is current. It seems highly unlikely that one would make a "mistake" and
so use Newton's method when simple iteration is feasible, unless IIJ II comes from a
previous step. This cannot happen unless convergence is satisfactory, for otherwise
a new approximate Jacobian would be formed. If convergence is satisfactory and
our recommendation about retaining a copy of J is accepted, a change of step size
would not be accompanied by formation of a new Jacobian. Thus, even if an
isolated mistake is made, the code would solve the problem there in a relatively
cheap way.

TYPE-INSENSITIVE ODE CODES 505

4. Changing Type from Nonstiff to Stiff. Recognizing when a problem has
changed from nonstiff to stiff is much harder than recognizing a change in the
reverse direction because much less information is available. For some years the
author has investigated this matter for the most popular methods for solving
nonstiff problems, the explicit Runge-Kutta and the Adams methods. The studies
have had some success, but the schemes proposed have all been carefully described
as deciding whether the reason for a code working too hard is stiffness. The goal,
however, is a scheme so sensitive that information gathered in a single step would
suffice. We describe here how to do this. The new element in this investigation is to
ask what kind of formula, reasonable for nonstiff problems, makes the decision
easy, as opposed to asking how to make the decision for specific formulas. The
author worked out the basic idea some years ago for the BIOS code alluded to in
[6]. The code development had to be interrupted before the new test was imple-
mented. However, we did apply one tool in the recent study [7] of detecting large
Lipschitz constants and stiffness in Adams and Runge-Kutta codes. We mention
this background because it is important to understand what was different about the
situation in BIOS.

Although BIOS was intended for the solution of nonstiff problems, it was based
on block implicit one-step formulas, which happen to be implicit A -stable formulas.
The formulas were selected because of their suitability for constructing a variable
order Runge-Kutta code, and no particular importance was attached to their
stability properties nor to their being implicit. Naturally, in the context of their
planned use, the implicit formulas were evaluated by simple iteration. We soon
realized that with any IA formula we have two step sizes of interest. There is the
largest step size which could achieve the desired local accuracy, hacc There is a step
size hite, such that for h < hiter, simple iteration converges. IA-stiffness means that
the code must use a step size smaller than that which would give the desired
accuracy so as to make the cheap iteration for evaluating the formula converge. We
thus define

hacc = IA-stiffness index.
hiter

If the index is large, it is cost-effective to resort to a more expensive way of
evaluating the formula which allows us to use a step size more nearly hacc.

Because all modern differential equation solvers estimate haw' it appears that we
need only deal with the restriction on the step size due to the iteration method.
Quite the contrary. There is a fundamental difficulty with hacc. In our studies of
explicit Runge-Kutta methods [8], [9] we avoided using hacc just because of this
difficulty. We also avoided its use in a test for Adams codes [10], but more recently
did try to use it in [7]. The difficulty is that in the presence of a finite absolute
stability region, the step size estimated by the code as appropriate for producing
the desired accuracy, hest, may be derived from a "rough" numerical solution
contaminated by propagated error rather than from the underlying smooth true
solution. In a subsequent paper dealing with formulas which are not A-stable, we
shall have to discuss this fully. Here we simply note that it is only because we work
with A -stable formulas that we can always approximate h - hCSt

506 L. F. SHAMPINE

Next, we consider how to estimate the restriction on the step size for the
convergence of simple iteration. Here is where we use the implicitness of the
formula to gather the information required. Suppose the code forms hest, For a
number of reasons a step size h = 'hest is actually tried, where D is a known
quantity which may depend on a variety of computed quantities. Starting with a
predicted value y?, a sequence of iterates ym is formed by simple iteration as in
(2.2a) with J = 0. If L is the Lipschitz constant of (2.5) on a ball about y* of radius
v containingyo, we have

m+2 _
ym+llI = IIhyf(ym+l) - hyf(ym)II

< hyLIlym+l - ymll = chest yLIIym+1 - ymII.

The step size hiter is defined by

hiter yL = 1,

so that h < hiter is the condition that the iteration contract in norm on the ball.
These observations provide a computable lower bound for the IA-stiffness index:

m +2 - m+ 1 yLh h h (1) 1 IIY -Y 11 _<_yL
= est _ acc

y
M+1 -

ym h~~iter hiter

The lower bound for the stiffness index tells us the penalty paid for using simple
iteration. If it is "large," we surely want to switch to the more expensive iteration
scheme. What if the bound is not large? Does this mean the problem is not stiff?
No, the fact that simple iteration will diverge for some near y* does not preclude
it converging for other yo. Thus, it may happen that we get convergence when we
had no right to expect it.

There are several reasons why we might accept a step and not even have
available the bound (1) on the IA-stiffness index. Some acceptance tests are
described in [3], [11], [12]. A reliable and simple acceptance test based on the
residual, which is recommended by Shampine [11] and by Williams [12], could
accept y or y . A much less reliable test described in [3] could sometimes accept y.
In such situations, the information needed to form the bound is simply not
available. If yo or a subsequent iterate should be about as accurate as possible in
the precision of the computer, the quantities IIym +I - ym may be roundoff errors
only and we cannot form the bound reliably. (The residual test will terminate the
iteration before forming such a quantity. With other acceptance tests, one can spot
such a quantity easily and with reasonable reliability as we did in [7].)

Thus, the index might not reveal the stiffness, the information might not be
available to compute the index, or the information available to compute the index
might not be reliable. This does not matter. Our object is to integrate the
differential equation efficiently, not to determine stiffness per se. If we should
evaluate the formula cheaply with simple iteration when we had no right to expect
it, we can just enjoy our good fortune. Because we are using A-stable formulas, we
need not worry about the integration remaining stable. This is a crucial issue with
formulas which are not A -stable because of the effect on hest, but it is not an issue
at all with the kind of formulas we study here.

TYPE-INSENSITIVE ODE CODES 507

To recapitulate, the fact that the formula is implicit A -stable is used in several
ways:

(i) stiffness in a practical sense is equivalent to the rapid divergence of simple
iteration;

(ii) hest -hacc;
(iii) the integration remains stable if we make a "mistake" by accepting a step

computed with simple iteration when simple iteration is not in general convergent
for this step size;

(iv) the step size restriction due to simple iteration can be estimated from
available data.

We have already said that we believe every integration should be started off with
a step size small enough that simple iteration converge, so as to get on scale. If the
problem never exhibits IA-stiffness, then the procedure described in this section
will never call for the formation of a Jacobian and its attendant costs of storage
and linear algebraic computations. Thus, if the problem is unequivocally nonstiff, it
will be solved using simple iteration and algorithmic tactics appropriate to the type.
If the problem is unequivocally stiff, a switch to a simplified Newton iteration will
be made just as soon as the IA -stiffness is evident.

5. Changing Formulas. There is no need to use the same formula for both stiff
and nonstiff portions of the integration. What we want in a formula is a bit
different in the two cases. A-stability is important to our way of recognizing
stiffness when solving nonstiff problems, but damping at infinity is not important
except when solving stiff problems. Accuracy is a critical matter for the solution of
nonstiff problems, but it is of secondary importance for the solution of stiff
problems. Changing formula at the same time one changes iteration method offers
interesting possibilities for improved performance. To consider changing from one
formula to another, we must be able to relate the truncation errors and the
restrictions due to convergence of simple iteration for the two formulas so as to
alter the step size appropriately. These questions are not germane to this paper and
we are not going to take them up in general. However, to show what might be
done, we will sketch an interesting possibility.

Few people would disagree that if one is working at order two, the trapezoidal
rule (AM2) is a very attractive formula for nonstiff problems and the BDF2 a very
attractive formula for stiff problems. The AM2 is not strongly damped at infinity
as the BDF2 is and so is not nearly as suitable for solving stiff problems. On the
other hand, it is considerably more suitable for solving nonstiff problems. The
truncation errors of the AM2 and the BDF2 are

(1) 12h3Iy(3)(()J and Ih3ly(3)(v)j,

respectively. This means that the AM2 could achieve the same accuracy as the
BDF2 with a step size bigger by a factor of about 1.59. Furthermore, the conditions
for the convergence of simple iteration are

(2) 1 llhJll < 1 and 2llhJl < 1,

508 L. F. SHAMPINE

respectively. This means that simple iteration can be used with the AM2 at a step
size bigger by a factor of about 1.33.

We propose that one use the AM2 when simple iteration is feasible and the
BDF2 when it is not. Because of the extremely simple relationships (1) and (2), we
can at any time understand the effects of a change of formula and select an
appropriate step size. It is easy to implement the two formulas in virtually identical
fashion so that a change is very easy; compare, for example, the implementation of
both in the DIFSUB code [4].

It is worth noting that Klopfenstein [13] has derived a second order formula,
which we shall call K2, enjoying all the aforementioned properties of the BDF2.
The condition for convergence of simple iteration is

3 lhJIll < 1,

and the truncation error is

I h3y3()

The former is slightly better than the BDF2 and the latter is significantly better.
We would implement K2 rather than the BDF2 in a type-insensitive code.

A code along the lines sketched would satisfy remarkably well the attributes one
would hope for in a type-insensitive code. It is a pity that the order is only two, but
there are important areas in which this would suffice.

6. Some Applications. There is a considerable variety of formulas and procedures
to which our ideas apply. We shall cite here some effective codes for stiff problems
which, in principle, could be altered easily to make them type-insensitive. Unfor-
tunately, a change to an existing code which is simple in concept is often
surprisingly difficult in practice. Providing an alternative iteration method is only
part of the task. To properly solve nonstiff problems, some basic tactics, such as
those for adjustment of step size, must be different from those for solving stiff
problems. Providing an alternative set of tactics implies a substantial software
development effort.

We shall not mention any specific one of the many codes based on the multistep
formulas we have given as examples-BDF1, BDF2, AM2. Klopfenstein has a code
STIFEQ which implements the interesting formula K2 described in Section 5. It
needs no further comment.

Hulme and Daniel [14] have implemented two families of fully implicit Runge-
Kutta formulas in COLODE. The Legendre family is A-stable and the Radau
family strongly A-stable. This code makes several Jacobian evaluations in each
step, the number depending on the order of the formula selected. It estimates the
local error by doubling, meaning that two steps of length h are taken and
compared to one of length 2h. This implies two matrix factorizations at each step.
As Hulme and Daniel properly point out, this code is extremely expensive in terms
of Jacobian evaluations, storage, and overhead when applied to a nonstiff problem.
Our ideas do away with all this expense and so make the code of acceptable
efficiency for a nonstiff problem. Indeed, because Jacobian evaluations are made
at every step, the decision about switching to simple iteration is sharper than it is in
many codes.

TYPE-INSENSITIVE ODE CODES 509

Alexander [15] has implemented a number of semi-implicit Runge-Kutta meth-
ods involving one to three stages. All the formulas are at least A -stable. The local
error is estimated by doubling. It is clear that using simple iteration, when feasible,
greatly reduces the cost. Norsett has derived a-scond order semi-implicit formula
with internal error estimate. It has been implemented nicely so as to take account
of sparse Jacobians by Houbak and Thomsen [16]. The formula has three stages
with an overlap of one stage into the next step if the step is a success and the next
step is of the same size. The formula is L-acceptable, hence our ideas apply. The
gain is not as dramatic as in Alexander's code because of the more efficient error
estimation scheme, but it is still just what is needed to make the formula practical
for nonstiff problems.

The idea of extrapolation is to solve a problem twice (or more) with the same
formula using different step sizes and to combine the results to get a higher order
result. Lindberg does this with the modified midpoint rule in his code IMPEX 2

[17]. When simple iteration is feasible it is very advantageous because it avoids two
matrix factorizations coming from the various integrations. Extrapolation has been
rather successful for the solution of nonstiff problems, so it is possible that a
type-insensitive version of IMPEX 2 might be pretty competitive for such prob-
lems.

Defect correction methods resemble extrapolation in some respects. More than
one integration is done, but the problem is altered rather than the step size.
Ueberhuber [18] does the integrations with the backward Euler method. Because of
the low order of the basic formula, several integrations are normally done.
Recognizing when simple iteration is feasible is of obvious importance to make the
method practical for nonstiff problems.

The examples cited show that quite a variety of effective codes for stiff problems
could be altered to make them type-insensitive. It is not claimed that they would
compete with the best codes for nonstiff problems, but they would be practical.
Their performance on stiff problems would be improved, as they take advantage of
a change of type in the course of the integration. It would be worth a lot to many
users to have just one code for all their problems which would be efficient for
expensive (stiff) problems and be of acceptable efficiency for relatively inexpensive
(nonstiff) problems.

Numerical Mathematics Division 5642
Sandia National Laboratories
Albuquerque, New Mexico 87185

1. M. R. ScoTr & H. A. WATrs, "A systemized collection of codes for solving two-point boundary-
value problems," in Numerical Methods for Differential Systems (L. Lapidus and W. Schiesser, Eds.),
Academic Press, New York, 1976, pp. 197-227.

2. A. E. RODRIGUES & E. C. BEIRA, "Staged approach of percolation processes," AIChE J., v. 25,
1979, pp. 416-423.

3. L. F. SHAsNpi, "Implementation of implicit formulas for the solution of ODEs," SIAM J. Sci.
Stat. Comput., v. 1, 1980, pp. 103-118.

4. C. W. GEAR, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall,
Englewood Cliffs, N. J., 1971.

5. J. M. ORTEGA & W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several Variables,
Academic Press, New York, 1970.

510 L. F. SHAMPINE

6. L. F. SiAMPmIE, M. K. GORDON & J. A. WISNIEWSKI, "Variable order Runge-Kutta codes," in

ConWutational Techniques for Ordinary Differential Equations (I. Gladwell and D. K. Sayers, Eds.),
Academic Press, London, 1980.

7. L. F. SHAMPINE, "Lipschitz constants and robust ODE codes," in Computational Methods in
Nonlinear Mechanics (J. T. Oden, Ed.), North-Holland, Amsterdam, 1980.

8. L. F. SHAMPINE, "Stiffness and non-stiff differential equation solvers, II: Detecting stiffness with
Runge-Kutta methods," ACM Trans. Math. Software, v. 3, 1977, pp. 44-53.

9. L. F. SHAiPINE & K. L. Hiebert, "Detecting stiffness with the Fehlberg (4, 5) formulas," Comp. &

Maths. with Appls., v. 3, 1977, pp. 41-46.
10. L. F. SHAMPIN & M. K. GORDON, ComWuter Solution of Ordinary Differential Equations: The

Initial Value Problem, Freeman, San Francisco, 1975.
11. L. F. SHAMPINE, "Evaluation of implicit formulas for the solution of ODEs," BIT, v. 19, 1979, pp.

495-502.
12. J. WILLIAMS, The Problem of Implicit Formulas in Numerical Methods for Stiff Differential

Equations, Rep. 40, Dept. of Math., Univ. of Manchester, Manchester, England, 1979.
13. R. W. KLoPFENSTEIN, "Numerical differentiation formulas for stiff systems of ordinary differential

equations," RCA Rev., v. 32, 1971, pp. 447-462.
14. B. L. HULME & S. L. DANIEL, COLODE: A Colocation Subroutine for Ordinary Differential

Equations, Rep. SAND74-0380, Sandia Laboratories, Albuquerque, N. M., 1974.
15. R. ALEXANDER, "Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s," SIAM J. Numer.

Anal., v. 6, 1977, pp. 1006-1021.
16. N. HouBAK & P. G. THOMSEN, SPARKS, a FORTRAN Subroutine for the Solution of Large

Systems of Stiff ODE's with Sparse Jacobians, Rep. NI-79-02, Inst. for Numer. Anal., Tech. Univ. of
Denmark, Lyngby, Denmark, 1979.

17. B. LINDBERG, IMPEX 2, a Procedure for Solution of Systems of Stiff Differential Equations, Rep.
TRITA-NA-7303, Dept. of Inform. Processing, Royal Inst. of Tech., Stockholm, Sweden, 1973.

18. C. W. UEBERHUBER, "Implementation of defect correction methods for stiff differential
equations," Computing, v. 23, 1979, pp. 205-232.

